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ABSTRACT

One of the technological challenges in designing advanced hypersonic aircraft and the
next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As
an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics
(CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel
tank. This model employs the full set of Navier-Stokes equations, except that viscous
dissipation is neglected in the energy equation. An explicit finite difference technique in
two-dimensional generalized coordinates, approximated to second-order accuracy in both
space and time is used. The stiffness resulting from the low Mach number is resolved by
using artificial compressibility. The model simulates the transient, two-dimensional
draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface
between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data
for free convection inside a horizontal cylinder are compared with model results. Finally,
cryogenic tank draining calculations are performed with three different wall heat fluxes to
demonstrate the effect of wall heat flux on the internal tank flow field.

NOMENCLATURE

CFD computational fluid dynamics

He/LH2 helium and liquid hydrogen

K kelvin

J/m2-s joules per meter squared per second

m meter

m/s meters per second

q speed, meters per second 



                            
qi initial speed

T temperature, K

Tavg average temperature, K

Ti initial temperature, K

u, v velocity, meters per second

ρ density, kilograms per meter cubed

ρi initial density, kilograms per meter cubed

INTRODUCTION

Developing analytical models for thermodynamic predictions of cryogenic fuel tanks
has not received a large amount of attention. However, a number of people have done work
in this field. Grayson and Navickas1 performed an axisymmetric Navier-Stokes analysis of a
liquid hydrogen propellant tank. Their analysis treated the cryogenic liquid-pressurization
gas interface as a free boundary and therefore the ullage region of the tank was not modeled.
Their results show that sloshing is an important factor in predicting tank thermal gradients.
Zhou and Graebel2 developed an axisymmetric model for a cylindrical tank draining
process. They used a boundary integral method and assumed the fluid was incompressible
and inviscid. Heat transfer was not considered, as they were interested in the free surface
motion near the tank drain hole. Several thermodynamic models3,4,5 have been developed
for analyzing cryogenic tanks. These models are based upon quasi-steady-state solutions of
the first law of thermodynamics.

The computational fluid dynamic (CFD) model presented herein simulates the two-
dimensional cross section of a cryogenic tank draining process. The CFD model is
developed in generalized curvilinear body-fitted coordinates to allow for a variety of cross-
sectional shapes. The time-dependent Navier-Stokes equations are modeled for both the
cryogenic liquid and the pressurization gas. The interface between the pressurization gas
and cryogenic liquid is modeled as a free surface to enable the prediction of slosh wave
dynamics. The energy transfer across the interface is calculated, but mass transfer is
neglected. To reduce stiffness and decrease the computational time the method of artificial
compressibility developed by Chorin6 is used. The development of the finite difference
equations utilized a volume integral procedure as discussed by Lick7. The mathematical
details of the algorithms development are presented in the Greer reference8. Use of trade
names or names of manufacturers in this document does not constitute an official
endorsement of such products or manufacturers, either expressed or implied, by the National
Aeronautics and Space Administration.

MODEL COMPARISON TO EXPERIMENTAL DATA

A series of calculations were made to model the free convection process inside a
horizontal cylinder. Experimental data from Martini and Churchill9,10 is available for
comparison. Briefly, the experiment of Martini and Churchill was for a horizontal cylinder
which was 1 meter long and had an inside diameter of 0.1 meter. Each hemispherical side of
the cylinder was held at constant but separate temperatures using a dual-sided water bath.
After steady state was reached, temperature and velocity measurements were made at the
midspan of the cylinder. The fluid inside the cylinder was air.



               
An 8-sided polygon was used to simulate the experiment as shown in Figure 1.
Calculations were performed for a Reynolds cell number of 5 (100 by 100 node grid),
Courant-Friedrich-Levy number of 0.2, and Mach scaling factor of 250 (0.05 Mach
number). Figures 2 and 3 present the velocity vectors and temperature contours. These
figures show that the free convective flow travels in a boundary layer at the cylinder wall.
The interior of the cylinder is relatively motionless. This is exactly what Martini and
Churchill observed in their experiments. They concluded that the buoyancy forces were
stronger than the viscous forces in the interior region. The temperature contours show that
the fluid stratifies in the interior, which was experimentally observed. Figures 4 and 5
compare the velocity and temperature boundary layer profiles to the experimental data. The
characteristics of the flow field between the model and the experimental data are in very
good agreement.

FUEL TANK ANALYSIS

An 8-sided polygon was chosen as representative of a circular tank. (A circle can not
be transformed into generalized coordinates because of the singular points at the corners.)
The boundary and initial conditions are shown in Figure 6. The geometry for the 8-sided
polygon is the same for all calculations. The drain calculations begin with the tank
70-percent full and the calculations are terminated when the tank is 30-percent full as was
done for the rectangular tank. The initial and final grid geometry are shown in Figures 7
and 8. The fluids used are helium and liquid hydrogen. Calculations were performed for a
Reynolds cell number of 8.2 (40 by 40 node grid), Courant-Friedrich-Levy number of 0.1,
and Mach scaling factor of 100 (0.01 Mach number). The CPU time was 16 hours for each
drain calculation performed on a Sun Ultra computer with a clock speed of 300MHz.

Figures 9 through 14 present velocity vectors of drain calculations for wall heat fluxes
of 0, 1, and 2 J/m2-s. The addition of heat flux at the wall causes a pair of convection
vortices to form in the gaseous helium. As shown in the figures, the heat flux increases the
helium flow velocities. The maximum flow velocities at the vertical side wall is 0.0017 m/s
for q=0 J/m2-s, 0.0035 m/s for q=1 J/m2-s, and 0.0051 m/s for q=2 J/m2-s. Figures 15 and 16
show temperature contours for the two cases with heat flux. The temperatures are symmetric
and increase with higher heat flux. A secondary flow pattern develops in the gas region at
the interface (near the center) for the q=2 J/m2-s case (fig 14). This secondary flow pattern is
a result of increased flow velocity inside the tank. It is caused by the wall heat flux and the
geometry of decreasing tank width in the vicinity of the interface. Calculations with a
rectangular geometry revealed no secondary flow patterns.

CONCLUDING REMARKS

A computational fluid dynamics model was developed to support the design, test, and
analysis of cryogenic fuel tanks. This model uses a time-dependent finite difference
technique in generalized coordinates. The finite difference algorithms were developed
utilizing a volume integral method. To allow for the prediction of slosh wave dynamics, the
interface between the liquid and the gas was modeled as a free surface. Artificial
compressibility was used to decrease computational times. The model data compared well
to experimental data for free convection inside a horizontal cylinder. A tank draining
analysis was performed on an 8-sided polygon. Wall heat flux was found to be significant in
the ullage gas, while it was insignificant in the liquid. This result is a function of the tank
analysis parameters (drain rate, wall heat flux, etc.) and is not a general result for cryogenic
fuel tanks. A secondary flow pattern was found to develop in the ullage gas for a large wall
heat flux.
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Figure 1. An 8-sided polygon for free convection 
inside a horizontal cylinder, 100 by 100 node grid.

Figure 3. Temperature contours, T-Tavg, at steady 
state for free convection inside a horizontal cylinder.
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Figure 2. Velocity vectors at steady state for free 
convection inside a horizontal cylinder, vector skip 
index of 2.

Figure 4. Comparison of velocity profiles across the 
horizontal diameter to experimental data of Martini 
and Churchill. Steady state free convection inside a 
horizontal cylinder.
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Experimental data
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Figure 5. Comparison of temperature profiles 
across the horizontal diameter to experimental data 
of Martini and Churchill. Steady state free 
convection inside a horizontal cylinder.

Figure 7. Initial 8-sided polygon grid. Drain time = 
0 seconds.
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Figure 6. Geometry, boundary, and initial 
conditions for 8-sided polygon tank analysis. Tank 
is symmetric and 1 m by 1 m.

Figure 8. Final 8-sided polygon grid. Drain time = 
300 seconds.
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Figure 9. Velocity vectors at 50 seconds. He/LH2, 
q=0 J/m2-s.

Figure 11. Velocity vectors at 50 seconds. He/LH2, 
q=1 J/m2-s.
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Figure 10. Velocity vectors at 300 seconds. He/
LH2, q=0 J/m2-s.

Figure 12. Velocity vectors at 300 seconds. He/
LH2, q=1 J/m2-s.
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Figure 13. Velocity vectors at 50 seconds. He/LH2, 
q=2 J/m2-s.

Figure 15. Temperature contours, , at 
300 seconds. He/LH2, q=1 J/m2-s.
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T Ti–
Figure 14. Velocity vectors at 300 seconds.
He/LH2, q=2 J/m2-s.

Figure 16. Temperature contours, , at 
300 seconds. He/LH2, q=2 J/m2-s.
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